11
Acoustique et défense
66
Le son 3D comme interface homme/machine en milieu aéronautique
[8] Wightman, F.L. and D.J. Kistler, Resolution of front-back ambiguity in spatial
hearing by listener and source movement. J Acoust Soc Am, 1999. 105(5): p.
2841-2853
[9] Wallach, H., The role of head movements and vestibular and visual cues in
sound localization. J Exp Psychol, 1940. 27(4): p. 339
[10] Nicol, R., Binaural Technology 2009: AES Monograph
[11] Wightman, F.L. and D.J. Kistler, Headphone simulation of free-field listening.
I: Stimulus synthesis. J Acoust Soc Am, 1989. 85(2): p. 858-867
[12] Møller, H., et al., Head-related transfer functions of human subjects. J Audio
Eng Soc, 1995. 43(5): p. 300-321
[13] Martin, R.L., K.I. McAnally, and M.A. Senova, Free-field equivalent
localization of virtual audio. J Audio Eng Soc, 2001. 49(1/2): p. 14-22
[14] Pralong, D. and S. Carlile, Generation and validation of virtual auditory
space, in Virtual auditory space: generation and applications, S. Carlile, Editor
1996: Landes, Austin. p. 109–152
[15] Wightman, F. and D. Kistler, Measurement and Validation of Human HRTFs
for Use in Hearing Research. Acta Acustica/Acustica, 2005. 91(3): p. 429-439
[16] Middlebrooks, J.C., Individual differences in external-ear transfer functions
reduced by scaling in frequency. J Acoust Soc Am, 1999. 106(3 Pt 1): p. 1480-1492
[17] Kulkarni, A. and H.S. Colburn, Role of spectral detail in sound-source
localization. Nature, 1998. 396(6713): p. 747-749
[18] Langendijk, E.H. and A.W. Bronkhorst, Fidelity of three-dimensional-sound
reproduction using a virtual auditory display. J Acoust Soc Am, 2000. 107(1): p.
528-537
[19] Zotkin, D.N., et al., Fast head-related transfer function measurement via
reciprocity. J Acoust Soc Am, 2006. 120(4): p. 2202-2215
[20] Wenzel, E.M., et al., Localization using nonindividualized head-related
transfer functions. J Acoust Soc Am, 1993. 94(1): p. 111-123
[21] Wenzel, E.M. Effect of increasing system latency on localization of virtual
sounds. in Audio Engineering Society 16th International Conference on Spatial
Sound Reproduction. 1999
[22] Parker, S.P., Construction of 3-D Audio Systems: Background, Research,
and General Requirements, 2008, Defense Science and Technology Organisation
[23] Bolia, R.S., W.R. D’Angelo, and R.L. McKinley, Aurally aided visual search in
three-dimensional space. Hum Factors, 1999. 41(4): p. 664-669
[24] Begault, D.R. and M.T. Pittman, Three-dimensional audio versus head-down
traffic alert and collision avoidance system displays. Int J Aviat Psychol, 1996.
6(1): p. 79-93
[25] Haas, E.C. Can 3-D auditory warnings enhance helicopter cockpit safety.
1998. Human Factors and Ergonomics Society
[26] Drullman, R. and A.W. Bronkhorst, Multichannel speech intelligibility and
talker recognition using monaural, binaural, and three-dimensional auditory
presentation. J Acoust Soc Am, 2000. 107(4): p. 2224-2235
[27] Ericson, M. and R. McKinley, The intelligibility of multiple talkers spatially
separated in noise. Binaural and spatial hearing in real and virtual environments,
1997: p. 701–724
[28] Yost, W.A., The cocktail party problem: Forty years later. Binaural and
spatial hearing in real and virtual environments, 1997: p. 329–348
[29] MacDonald, J.A., et al., Intelligibility of speech in a virtual 3-D environment.
Hum Factors, 2002. 44(2): p. 272-286
[30] Bles, W., Spatial disorientation countermeasures–Advanced problems and
concepts. Spatial disorientation in aviation, 2004: p. 509-540
[31] Bronkhorst, A.W., J.A. Veltman, and L.V. Vreda, Application of a Three-
Dimensional Auditory Display in a Flight Task. Hum Factors, 1996. 38(1)
[32] Bolia, R.S. Spatial intercoms for air battle managers: Does visually cueing
talker location improve speech intelligibility. in 12th International Symposium on
Aviation Psychology. 2003
[33] Nelson, W.T., et al., Effects of Localized Auditory Information on Visual
Target Detection Performance Using a Helmet-Mounted Display. Hum Factors,
1998. 40(3): p. 452-461
[34] Parker, S.P.A., et al., Effects of supplementing head-down displays with
3-D audio during visual target acquisition. Int J Aviat Psychol, 2004. 14(3): p.
277-295
[35] Andeol, G. and A. Guillaume, Le son 3D en aéronautique : applications et
contraintes. Rev Med Aero Spat, 2010. 51(189): p. 5-12
[36] Sarafian D., Pellieux L., Bouy J.C., Andeol G., 3D sound in the helicopter
environment: localisation performance, in Binaural Processing and Spatial
Hearing, D.T. Buchholz J.M., Dalsgaard J.C., Poulsen T., Editor 2009: Helsingor.
p. 128-141
[37] Savel, S., C. Drake, and G. Rabau, Human Auditory Localisation in a
Distorted Environment: Water. Acta Acustica/Acustica, 2009. 95(1): p. 128-141
[38] Hofman, P.M., J.G. Van Riswick, and A.J. Van Opstal, Relearning sound
localization with new ears. Nat Neurosci, 1998. 1(5): p. 417-421
[39] Andeol, G., et al., Auditory Efferents Facilitate Sound Localization in Noise in
Humans. J Neurosci, 2011. 31(18): p. 6759-6763