48
Spécial “10
e
anniversaire”
Acoustique
&
Techniques n° 42-43
[78] Pinard F, Laine B, Vach H. (2003). Musical quality assessment of clarinet
reeds using optical holography. Journal of the Acoustical Society of America 113,
1736-1742
[79] Facchinetti, M. L., Boutillon, X., Constantinescu, A. (2003). Numerical and
experimental modal analysis of the reed and pipe of a clarinet. Journal of the
Acoustical Society of America 113, 2874-2883.
[80] Whitehouse J.W., Sharp D.B. et Harrop N.D. (2001). The use of laser doppler
velocimetry in the measurement of artificially induced wall vibrations in wind
instruments. Proc. of the International Symposium on Musical Acoustics, Perugia,
Italy, 411-414.
[81] Moore T.R., Shirley E.T. et Daniels A.E. (2003). Trumpet bell vibrations
and their effect on the sound of the instrument. Proceedings of the Stockholm
Musical Acoustic Conference (SMAC), 213-215.
[82] Pico Vila R., Gautier F. et Gilbert J. (2004). Study of the input acoustic
impedance of a vibrating cylindrical shell : consequences on clarinet-like
instrument oscillations. Proceedings of the joint congress CFA/DAGA’04,
Strasbourg, France, 879-880.
[83] Fuks L. et Sundberg J. (1999). Blowing pressures in bassoon, clarinet, oboe
and saxophone. Acta Acustica United with Acustica 85, 267-277.
[84] Fabre B. et Hirschberg A. (2000). Physical modeling of flue instruments: A
review of lumped models. Acta Acustica United with Acustica 86, 599-610.
[85] Nolle A.W. (1998). Sinuous instability of a planar jet : propagation
parameters and acoustic excitation. Journal of the Acoustical Society of America
103, 3690-3705.
[86] Hill T. J. W., Richardson B. E. et Richardson S. J. (2004). Acoustical
parameters for the characterisation of the classical guitar. Acta Acustica United
With Acustica 90, 335-348.
[87] Gautier F. et Dauchez N. (2004). Acoustic intensity measurement of the
sound field radiated by a concert harp. Applied Acoustics 64, 1221-1231.
[88] Woodhouse J. (2005). On the «bridge hill» of the violin». Acta Acustica
United With Acustica 91, 155-165.
[89] Weinreich G. (1997). Directional tone color. Journal of the Acoustical Society
of America 101, 2338-2346.
[90] Woodhouse J. et Loach A. R. (1999). Torsional behaviour of cello strings.
Acta Acustica United With Acustica 85, 734-740.
[91] Smith J. H. et Woodhouse J. (2000). The tribology of rosin. Journal of the
Mechanics and Physics of Solids 48, 1633-1681.
[92] Woodhouse J., Schumacher R. T. et Garoff, S. (2000). Reconstruction of
bowing point friction force in a bowed string. Journal of the Acoustical Society of
America 108, 357-368.
[93] Woodhouse J. (2003). Bowed string simulation using a thermal friction
model. Acta Acustica United With Acustica 89, 355-368.
[94] Bork I. (1995). Practical tuning of xylophone bars and resonators. Applied
Acoustics 46, 103-127.
[95] Rossing T.D., Hansen U. J., Rohner F. et Schärer S. (2003). The Hang:
A hand-played steel drum. Proceedings of the Stockholm Music Acoustics
Conference, Stockholm, Sweden, 351-353.
[96] Touzé C., Thomas O. et Chaigne A. (2002). Asymmetric nonlinear force
vibrations of free-edge circular plates. Part I: Theory. Journal of Sound and
Vibration, Vol 258, 649-676.
[97] Rossing T. D. (2000). Science of Percussion Instruments. World Scientific
Publishing Compagny, Singapore.
[98] Hiller L. et Ruiz P. (1971). Synthesizing Musical Sounds by Solving the Wave
Equation for Vibrating Objects. J. Audio Eng. Soc., Part I: vol. 19, no. 6, June
1971; Part II: vol. 19, no. 7, July/Aug. 1971.
[99] Weinreich G. (1980). Logiciel “Pianofortran” de synthèse sonore par modèle
physique (marteau, cordes, table d’harmonie), IRCAM.
[100] Center for Computer Research in Musical Acoustics, http://ccrma.
stanford.edu/, université de Stanford, États-Unis.
[101] Trautman L. et Rabinstein R., Digital sound synthesis by physical modeling
using functional transformation method, Kluwer Academic Publishers, New York,
2003.
[102] Institut de Recherche et de Coordination Acoustique / Musique, http://
www.ircam.fr
[103] http://www.ircam.fr/236.html?&tx_ircamboutique_pi1[showUid]=5&cHash
=c1753efdb7
[104] Applied Acoustics Systems, http://www.applied-acoustics.com
[105] http://www.applied-acoustics.com/tassman.htm
[106] http://www.applied-acoustics.com/loungelizard.htm
[107] Vergez C. et Rodet X. (2001). Trumpet and trumpet player : physical
modeling in a musical context, International Congress of Acoustics (ICA),
CDROM n±IV, Rome.
[108] De la Cuadra P., Vergez C. et Causse R. (2002). Use of physical-model
synthesis for developing experimental techniques in ethnomusicology- The case
of the Ouldeme flute. ICMC 2002.
[109] Almeida A., Vergez C., Caussé R. et Rodet X. (2004). Physical model of
an oboe: comparison with experiments, International Symposium on Musical
Acoustics (ISMA), 112-115, Nara, Japon.
[110] Laboratoire de Mécanique et d’Acoustique, http://www.lma.cnrs-mrs.fr/
[111] Guillemain P., Kergomard J. et Voinier T. (2003). Real-time synthesis
models of wind instruments based on physical models. In Proceedings of the
Stockholm Musical Acoustic Conference (SMAC), 389-392.
[112] Langue Musique et Société, http://www.vjf.cnrs.fr/lms/
[113] Laboratoire d’Acoustique Musicale, http://www.lam.jussieu.fr
[114] http://recherche.ircam.fr/equipes/instruments/cs2000/becvar/default.
htm
[115] Transforming the sound of musical instruments by active control of the
sound radiation, ACTIVE99, Florida, USA.
[116] Brass Instrument Analysis System, http://iwk.mdw.ac.at/index_e.htm
[117] http://ourworld.compuserve.com/homepages/philippe_bolton/index2.htm
[118] http://www.piano-stopper.de/html/mensurix_51.html
[119] http://www.phys.unsw.edu.au/music/
[120] Groupe Spécialisé d‘Acoustique Musicale de la Société Française
d’Acoustique : http://www.sfa.asso.fr/fr/gsam/fichiers/index.htm
[121] http://joeleymard.free.fr/
[122] http://koppreeds.com/index.html
[123] Institut Technologique Européen des Métiers de la Musique : http://www.
itemm.fr/
[124] Wold E. H. (1987). Nonlinear Parameter Estimation of Acoustic Models,
Thèse de doctorat, University of California, Berkeley, Etats-Unis.
[125] Hélie T., Vergez C., Lévine J. et Rodet X. (1999). Inversion of a physical
model of a trumpet. IEEE CDC : Conference on Decision and Control. Phoenix
Arizona, Décembre 1999
[126] D’Haes W. (2004). Automatic Estimation of Control Parameters for Musical
Synthesis. Thèse de doctorat, Université d’Anvers, Belgique.
[127] Henrique L.L. et Antunes J. (2003). Optimal Design and Physical Modelling
of Mallet Percussion Instruments. Acustica united with Acta Acustica 89, 948-
963.
[128] Petrolito J. et Legge K. A. (2005). Designing musical structures using
a constrained optimization approach. Journal of the Acoustical Society of
America117, 384-390.
[129] Brass Instrument Optimization Software,
http://iwk.mdw.ac.at/Forschung/deutsch/optimierung/optimization.htm
[130] Tinnsten M. et Carlsson P. (2002). Numerical optimization of violin top
plates. Acta Acustica United with Acustica 88, 278-285.
[131] Bijsterveld K. (2004). Breaking Into a World of Perfection: Innovation in
Today’s Classical Musical Instruments dans Social Studies of Science. Social
Studies of Science, 34, 649-674.
n
Dix ans d’acoustique musicale