Spécial “10
e
anniversaire”
47
Acoustique
&
Techniques n° 42-43
[25] Pielemeier W. J. et Wakefield G. H. (1996). A high-resolution time-frequency
representation for musical instrument signals. Journal of the Acoustical Society
of America 99, 2382-2396.
[26] Mellody M. et Wakefield G. H. (2000). The time-frequency characteristics of
violin vibrate: modal distribution analysis and synthesis. Journal of the Acoustical
Society of America 107, 598-611.
[27] Gilbert J., Ponthus S. et Petiot J. F. (1998). Artificial buzzing lips and brass
instruments: experimental results. Journal of the Acoustical Society of America
104, 1627-1632.
[28] Cullen J. S., Gilbert J. et Campbell D. M. (2000). Brass instruments: linear
stability analysis and experiments with an artificial mouth. Acta Acustica United
with Acustica 86, 704-724.
[29] Dalmont J. P., Gilbert J. et Ollivier S. (2003). Nonlinear characteristics
of single-reed instruments: quasistatic volume flow and reed opening
measurements. Journal of the Acoustical Society of America 114, 2253-2262.
[30] Almeida A, Vergez C., Caussé R. et Rodet X. (2003). Experimental research
on double reed physical properties. Proceedings of the Stockholm Music
Acoustics Conference (2 volumes), edited by Roberto Bresin, 243-246.
[31] Fritz C., Wolfe J., Kergomard J. et Caussé R. (2003). Playing frequency shift
due to the interaction between the vocal tract of the musician and the clarinet.
Proceedings of the Stockholm Music Acoustics Conference (2 volumes), edited
by Roberto Bresin, 263-266.
[32] Petiot J. F., Teissier F., Gilbert J. et Campbell M. (2003). Comparative
analysis of brass wind instruments with an artificial mouth: first results. Acta
Acustica United with Acustica 89, 974-979.
[33] Wilson T. D. et Keefe D. H. (1998). Characterizing the clarinet tone:
measurements of lyapunov exponents, correlation dimension, and unsteadiness.
Journal of the Acoustical Society of America 104, 550-561.
[34] Touzé C., Thomas O. et Chaigne A. (2002). Asymmetric nonlinear force
vibrations of free-edge circular plates. Part I: Theory. Journal of Sound and
Vibration 258, 649-676.
[35] Debut V. et Kergomard J. (2004). Analysis of the self-sustained oscillations
of a clarinet as a Van der Pol oscillator. In 18th International Congress on
Acoustics - ICA 2004, volume II, 1425-1428. Kyoto, Japon.
[36] Gibiat V. et Castellengo M. (2000). Period doubling occurrences in wind
instruments musical performance. Acta Acustica United with Acustica 86, 746-
754.
[37] Ollivier S., Dalmont J.P. et Kergomard J. (2004). Idealized models of reed
woodwinds. Part I : analogy with the bowed strings, Acustica united with Acta
Acustica 90, 1192-1203.
[38] Molin N. E. et Zipser L. (2004). Optical methods of today for visualizing
sound fields in musical acoustics. Acta Acustica United with Acustica 90, 618-
628.
[39] Fabre B., Hirschberg A. et Wijnands A.P.J. (1996). Vortex shedding in steady
oscillations of a flue organ pipe. Acta Acustica United with Acustica 82, 693-877.
[40] Ségoufin C., Fabre B., Verge M.P., Hirschberg A. et Wijnands A.P.J. (2000).
Experimental study of the influence of the mouth geometry on sound production
in a recorder-like instrument. Acta Acustica United with Acustica 86, 649-661.
[41] Dequand S., Willems J.F.H., Leroux M., Vullings R., van Weert M., Thieulot
C. et Hirschberg A. (2003). Simplified Models of Flue Instruments: Influence
of mouth geometry on the sound source. Journal of the Acoustical Society of
America 113, 1724-1735.
[42] Johansson E.L., Benckert L. et Gren P. (2003). Particle image velocimetry
(PIV) measurements of velocity fields at an organ pipe labium. Proceedings
of the Stockholm Music Acoustics Conference (2 volumes), edited by Roberto
Bresin, 321-324.
[43] Campbell D., Skulina D. et Greated C. (2004). Particule image velocimetry
applied to the study of wind instruments. 18th International Congress on
Acoustics, Kyoto, Japon.
[44] Bork I., Chaigne A., Trebuchet L. C., Kosfelder M. et Pillot, D. (1999).
Comparison between modal analysis and finite element modelling of a marimba
bar. Acta Acustica United with Acustica 85, 258-266.
[45] Bretos J., Santamaria C. et Moral J. A. (1997). Tuning process of xylophone
and marimba bars analyzed by finite element modeling and experimental
measurements. Journal of the Acoustical Society of America 102, 3815-3816.
[46] Chaigne A. et Doutaut V. (1997). Numerical simulations of xylophones .1.
time-domain modeling of the vibrating bars. Journal of the Acoustical Society of
America 101, 539-557.
[47] Doutaut V., Matignon D. et Chaigne A. (1998). Numerical simulations of
xylophones. ii. time-domain modeling of the resonator and of the radiated sound
pressure. Journal of the Acoustical Society of America 104, 1633-1647.
[48] Derveaux G., Chaigne A., Joly P. et Beache E. (2003). Time-domain
simulation of a guitar: model and method. Journal of the Acoustical Society of
America 114, 3368-3383.
[49] Rhaouti L., Chaigne A. et Joly P. (1999). Time-domain modeling and
numerical simulation of a kettledrum. Journal of the Acoustical Society of
America 105, 3545-3562.
[50] Pitteroff R. et Woodhouse J. (1998). Mechanics of the contact area between
a violin bow and a string. Part I: Reflection and Transmission Behaviour, Acta
Acustica United with Acustica 84, 543-562, Part II: Simulating the Bowed
String, Acta Acustica United with Acustica 84, 744-757, Part III : parameter
dependence. Acta Acustica United with Acustica 84, 929-946.
[51] Mc Intyre M. E., Schumacher M. E. et Woodhouse J. (1983). On the
oscillations of musical instruments. Journal of the Acoustical Society of America
74, 1325-1345.
[52] Giordano N. et Jiang M. (2004). Physical modeling of the piano. Eurasip
Journal on Applied Signal Processing 2004, 926-933.
[53] Woodhouse J. (2004). On the synthesis of guitar plucks. Acta Acustica
United with Acustica 90, 928-944.
[54] Woodhouse J. (2004). Plucked guitar transients: comparison of
measurements and synthesis», Acta Acustica United with Acustica 90, 945-965.
[55] Barjau A. et Gibiat V. (2003). Delayed models for simplified musical
instruments», Journal of the Acoustical Society of America 114, 496-504.
[56] Verge M.P., Hirschberg A. et Caussé R. (1997). Sound Production in
Recorderlike Instruments : A Simulation Model. Journal of the Acoustical Society
of America 101, 2925-2939.
[57] Vergez C., Rodet X. (1997). Model of the trumpet functioning: real time
simulation and experiments with an artificial mouth. International Symposium on
Musical Acoustics (ISMA), 425-432, Edinburgh, Scotland.
[58] Avanzini F. et Rocchesso D. (2002). Efficiency, accuracy, and stability issues
in discrete time simulations of single reed instruments, Journal of the Acoustical
Society of America 111, 2293-2301.
[59] Ducasse E. (2002). An alternative to the traveling-wave approach for use
in two-port descriptions of acoustic bores. Journal of the Acoustical Society of
America 112, 3031-3041.
[60] Van Walstijn M. et Campbell M. (2003). Discrete-time modeling of woodwind
instrument bores using wave variables. Journal of the Acoustical Society of
America 113, 575-585.
[61] Wolfe J., Smith J., Tann J. et Fletcher N. H. (2001). Acoustic impedance
spectra of classical and modern flutes. Journal of Sound and Vibration 243,
127-144.
[62] Wolfe J. et Smith J. (2003). Cutoff frequencies and cross fingerings in
baroque, classical, and modern flutes. Journal of the Acoustical Society of
America 114, 2263-2272.
[63] Dalmont J.P., Gazengel B., Gilbert J. et Kergomard J. (1995). Some aspects
of tuning and clean intonation in reed instruments. Applied Acoustics 46, 19-60.
[64] Debut V., Kergomard J. et Laloë F. (2005). Analysis and optimisation of the
tuning of the twelfths for a clarinet resonator. Applied Acoustics 66, 365-409.
[65] Geissler P., Martner O., Zerbs C. et Schleske M. (2003). Psychoacoustic
investigations on the possibility of aurally identical violins. Proceedings of the
Stockholm Music Acoustics Conference (2 volumes), edited by Roberto Bresin,
59-62.
[66] Bissinger G. (2004). Contemporary generalized normal mode violin
acoustics. Acta Acustica United with Acustica 90, 590-599.
[67] Amir N., Rosenhouse G. et Shimon U. (1995). A discrete model for tubular
acoustic systems with varying cross sections the direct and inverse problems.
Part 1: theory. Acustica 81, 450-462.
[68] Buick J.M., Kemp J., Sharp D.B., van Walstijn M., Campbell D.M. et
Smith R.A. (2002).Distinguishing between similar tubular objects using pulse
reflectometry: a study of trumpet and cornet leadpipes Measurement Science
and Technology, Volume 13, 750–757.
[69] Myers A. (1998). Characterization and Taxonomy of Historic Brass Musical
Instruments from an Acoustical Standpoint, thesis presented for the Degree of
Ph.D., University of Edinburgh.
[70] Helmholtz H.L.F. (1954). On the sensations of tone, Dover, New-York
(reprint).
[71] Raman C.V. (1918). On the mechanical theory of vibrations of bowed
strings. Indian Assoc. Cult. Sci. Bull. 15, 1-158.
[72] Benade A.H (1976). Fundamentals of musical acoustics. Oxford University
Press, New York.
[73] Nederveen C.J. (1998). Acoustical aspects of woodwind instruments.
Northern Illinois University Press, De Kalb, Etats-Unis (revised version).
[74] Hirschberg A., Gilbert J., Msallam R. et Wijnands A.P.J. (1996). Shock waves
in trombones. Journal of the Acoustical Society of America 99, 1754-1758.
[75] Msallam R., Dequandt S., Caussé R. et Tassart S. (2000). Physical model of
the trombone including nonlinear effects, application to the sound synthesis of
loud tones. Acta Acustica United with Acustica 86, 725-736.
[76] Ingard U. et Labate S. (1950). Acoustic circulation effects and the nonlinear
impedance of orifices. Journal of the Acoustical Society of America 22, 211-218.
[77] Atig M., Dalmont J-P. et Gilbert J. (2004). Saturation mechanism in clarinet-
like instruments, the effect of the localised non-linear losses. Applied Acoustics
65, 1113-1154.
Dix ans d’acoustique musicale