34
Spécial “10
e
anniversaire”
Acoustique
&
Techniques n° 42-43
[17] de Cheveigné A., (1997). Concurrent vowel segregation III : A neural model
of harmonic interference cancellation. Journal of the Acoustical Society of
America, 101, 2857-2865.
[18] McAdams S., Bertoncini J., (1997). Organization and discrimination of
repeating sound sequences by newborn infants. Journal of the Acoustical Society
of America, 102, 2945-2953.
[19] Brochard R., Drake C., Botte M.-C., McAdams S., (1999). Perceptual
organization of complex auditory sequences : effect of number of simultaneous
subsequences and frequency separation. J Exp Psychol Hum Percept Perform.
25, 1742-1759.
[20] Botte M.-C., Drake C., Brochard R, McAdams SD., (1997). Perceptual
attenuation of nonfocused auditory streams. Percept. Psychophys., 59, 419-425.
[21] Bey C., McAdams S., (2002). Schema-based processing in auditory scene
analysis. Percept Psychophys., 64, 844-54.
[22] Grimault N., Micheyl C., Carlyon R.P., Arthaud P., Collet L., (2000). Influence
of peripheral resolvability on the perceptual segregation of harmonic complex
tones differing in fundamental frequency. Journal of the Acoustical Society of
America, 108, 263-271.
[23] McAdams S., (1989). Segregation of concurrent sounds. I : Effect of
frequency modulation coherence. Journal of the Acoustical Society of America,
85, 2148-2159.
[24] Grimault N., Micheyl C., Carlyon R.P., Collet L., (2002a). Evidence for
two pitch encoding mechanisms using a selective auditory training paradigm.
Perception and Psychophysics, 64, 189-197
[25] Grimault N., Micheyl C., Carlyon R.P., Arthaud P., Collet L., (2001).
Perceptual auditory stream segregation of sequences of complex sounds in
subjects with normal and impaired hearing. British J. of Audiol., 35, 173-182.
[26] Demany L., Semal C., (sous presse). The slow formation of a pitch percept
beyond the ending time of a short tone burst. Perception and Psychophysics.
[27] Demany L., Montandon G., Semal C., (2004). Pitch perception and
retention : two cumulative benefits of selective attention. Perception and
Psychophysics, 66, 609-617.
[28] Demany L., Clément S., Semal C., (2001). Does auditory memory
depend on attention ? In : Physiological and Psychophysical Bases of Auditory
Function, edited by D.J. Breebaart, A.J.M. Houtsma, A. Kohlrausch, V.F. Prijs &
R. Schoonhoven. Shaker Publishing BV, Maastricht (The Netherlands), 461-467.
[29] Clément S., Demany L., Semal C., (1999). Memory for pitch versus memory
for loudness. Journal of the Acoustical Society of America, 106, 2805-2811.
[30] Demany L., Montandon G., Semal C., (2005). Internal noise and memory for
pitch. In : Auditory Signal Processing : Physiology, Psychoacoustics, and Models,
edited by D. Pressnitzer, A. de Cheveigné, S. McAdams & L. Collet. Springer
Verlag, New York, 230-236.
[31] Demany L., Ramos C., (2005). On the binding of successive sounds :
Perceiving shifts in nonperceived pitches. Journal of the Acoustical Society of
America, 117, 833-841.
[32] Semal C., Demany L., Ueda K., Hallé P.A., (1996). Speech versus nonspeech
in pitch memory. Journal of the Acoustical Society of America, 100, 1132-1140.
[33] Grimault N., Bacon S.P., Micheyl C., (2002b). Auditory stream segregation
on the basis of amplitude-modulation rate. Journal of the Acoustical Society of
America, 111, 1340-1348.
[34] McAdams S., (1994). Reconnaissance de sources et d’événements sonores.
In : Penser les sons : Psychologie cognitive de l’audition. S. McAdams &
E. Bigand (Eds.), Presses Universitaires de France, Paris, 157-214.
[35] Plomp R., (1970). Timbre as a multidimensional attribute of complex tones.
In : Frequency Analysis and Periodicity Detection in Hearing (397-414), R. Plomp
& G. F. Smoorenburg (Eds.), Leiden : Sijthoff.
[36] Grey J. M., (1977). Multidimensional perceptual scaling of musical timbres.
Journal of the Acoustical Society of America, 61, 1270-1277.
[37] Wessel D. L., (1979). Timbre space as a musical control structure. Computer
Music Journal, 3(2), 45-52.
[38] McAdams S., Winsberg S., Donnadieu S., De Soete G., Krimphoff J., (1995).
Perceptual scaling of synthesized musical timbres : Common dimensions,
specificities, and latent subject classes. Psychological Research, 58, 177-192.
[39] Iverson P., (1995). Auditory stream segregation by musical timbre : Effects
of static and dynamic acoustic attributes. Journal of Experimental Psychology :
Human Perception and Performance, 21, 751-763.
[40] Bey C., McAdams S., (2003). Post-recognition of interleaved melodies
as an indirect measure of auditory stream formation. Journal of Experimental
Psychology : Human Perception and Performance, 29, 267-279.
[41] Ehresman D., Wessel D. L., (1978). Perception of timbral analogies. Rapport
Ircam, n° 13. Paris.
[42] McAdams S., Cunibile J. C., (1992). Perception of timbral analogies.
Philosophical Transactions of the Royal Society, London, series B, 336, 383-389.
[43] McAdams S., Chaigne A., Roussarie V. (2004). The psychomechanics of
simulated sound sources : Material properties of impacted bars. Journal of the
Acoustical Society of America, 115, 1306-1320.
[44] Lakato, S., McAdams S., Caussé R., (1997). The representation of auditory
source characteristics : Simple geometric form. Perception & Psychophysics, 59,
1180-1190.
[45] Roussarie V., (1999). Analyse perceptive des structures vibrantes. Thèse de
doctorat, Université du Maine, Le Mans.
[46] Susini P., McAdams S., Winsberg S., (1999). À multidimensional technique
for sound quality assessment. Acta Acustica, 85, 650-656.
[47] Susini P., McAdams S., Winsberg S., Perry I., Vieillard S., Rodet, X., (2004).
Characterising the sound quality of air-conditiong noise. Applied Acoustics, 65,
763-790.
[48] Lemaitre G., Susini P., Winsberg S., McAdams S., (2003). Perceptively based
design of new car horns sounds. Actes du International Conference on Auditory
Display, University of Boston.
[49] Djelani T., Blauert J., (2001). Investigations into the build-up and breakdown
of the prcedence effect. Acta acustica – ACUSTICA, 87, 253–261.
[50] Nicol R., Emerit M., (1999). 3D-sound reproduction over an extensive
listening area : A hybrid method derived from holophony and ambisonic. Actes de
la 16e conférence internationale de l’AES, 10-12 avril, Rovaniemi, Finlande.
[51] Daniel J., Nicol R., Moreau S., (2003). Further investigations of high-order
ambisonics and wavefield synthesis for holophonic sound imaging. Actes de la
114e rencontre de l’AES, 22-25 mars, Amsterdam, Hollande.
[52] Djelani T., Pörschman C., Sahrhage J., Blauert J., (2000). An interactive
virtual-environment generator for psychoacoustic research II : Collection of head-
related impulse responses and evaluation of auditory localization. ACUSTICA/
acta acustica, 86, 1046–1053.
[53] Fels J., Buthmann P., Vorländer M., (2004). Head-related transfer functions
of children. Acta Acustica united with Acustica, 90, 918–927.
[54] Savel S., Drake C., (en révision). Adaptation in underwater sound localization
by humans : towards a re-organization of spatial mapping.
[55] Blum A., Katz B. F. G., Warusfel O., (2004). Eliciting adaptation to non-
individual HRTF spectral cues with multi-modal training. Actes du Congrès
commun CFA/DAGA’04, 1225 – 1226, Strasbourg, 22-25 mars.
[56] Marozeau J., Boullet I., Meunier S., Gagneux F., Boussard P., (2004).
Évaluation d’estimateurs de sonie. Acoustique et Techniques, n° 39, 27–34.
[57] Seefeldt A., Crockett B., Smithers M., (2004). A new objective measure of
perceived loudness. Actes du congrès de l’AES, 28–31 octobre, San Francisco,
USA.
[58] Paulus von E., Zwicker E., (1972). Programme zur automatischen
Bestimmung der Lautheit aus Terzpegeln oder Frequenzgruppenpegeln.
ACUSTICA, 27, 253–266.
[59] Moore B. C. J., Glasberg B. R., Baer T., (1997). À model for the prediction of
thresholds, loudness, and partial loudness. J. Audio. Eng. Soc., 45, 224–240.
[60] Meunier S., Susini P., Regal X., (1999). Effect of time distribution of
energy on loudness evaluation. Actes du Forum Acusticum, 14–19 mars, Berlin,
5pPPa12, S464.
[61] Susini P., McAdams S., (2000). Effet de récence dans une tâche de
jugement de la sonie. 5e Congrès français d’acoustique, 430 – 432, août 2000,
Lausanne, Suisse.
[62] Meunier S., Marchioni A., (2002). Loudness of sounds with temporal variable
intensity. Actes du Forum Acusticum, 16-20 septembre, Séville, réf. CD-ROM :
Env-Gen-006.
[63] Sommerfeldt S. D., Samuels T. O., (1996). Incorporation of loudness
measures in active noise control. Journal of the Acoustical Society of America,
109, 591-599.
[64] Canévet G., Mangiante G., (2004). Psychoacoustic assessment of active
noise control. Active 04, 20-22 septembre, Williamsburg, Virginie, USA.
[65] Fastl H., (1997). The psychoacoustics of sound-quality evaluation. ACUSTICA
acta acustica, 83, 754-764.
[66] Freed D. J., (1990). Auditory correlates of perceived mallet hardness for
a set of recorded percussive sound events. Journal of the Acoustical Society of
America, 87, 311-322.
[67] Chaigne A., Lambourg C., (2001). Time-domain of damped impact plates.
Part I. Theory and experiments. Journal of the Acoustical Society of America,
109, 1422–1432.
[68] Canévet G., Habault D., Meunier S., Demirdjian F., (2004). Auditory
perception of sounds radiated by a fluid-loaded vibrating plate excited by a
transient point force. Acta Acustica united with ACUSTICA, 90, 181–193.
[69] Faure J., Marquis-Favre C., (2005). Perceptual assessment of the influence
of structural parameters for a radiating plate. Acta Acustica united with
ACUSTICA, 91, 77–90.
n
La psychoacoustique : science de l’audition, science du son