48
Machines thermoacoustiques
Fig. 7 : Réfrigérateur thermoacoustique de démonstration (LAUM)
En France, des recherches sont menées depuis plus d’une
décennie essentiellement dans trois laboratoires: le Laboratoire
d’Acoustique de l’Université du Maine (LAUM), le Laboratoire
de Mécanique de Fluides et d’Acoustique (LMFA) de l’Ecole
Centrale de Lyon et le Laboratoire d’Informatique pour la
Mécanique et les Sciences pour l’Ingénieur (LIMSI) d’Orsay.
Les chercheurs français disposent de moyens analytiques,
numériques et expérimentaux, ainsi que de maquettes de
toutes dimensions qui leur permettent aujourd’hui d’aborder
tous les aspects de la thermoacoustique, des études fonda-
mentales aux diverses applications.
Références bibliographiques
[1] Kirchhoff G., «Ueber die Einfluss der Wärme leitung in einem Gase auf die
Schallbewegung» Annalen der Physik Leipzig 134, 1868, pp. 177-193 (English
translation 1974 in: R. B. Lindsay, ed. Physical Acoustics, Dowden, Hutchinson
and Ross, Stroudsburg)
[2] Rayleigh J.W.S., Theory of Sound, 1896, Second ed. reprinted by Dover New York
(1945)
[3] Cremer L., «On the acoustic boundary layer outside a rigid wall», Arch. Elektr.
Uebertr. 2 235, 1948
[4] Bruneau M. and Scelo T. (translator and contributor), Fundamentals of
Acoustics, ISTE, UK and USA, 2006
[5] Beatty R.E. Jr, «Boundary layer attenuation of higher order modes in
rectangular and circular tubes», J. Acoust. Soc. Am. 22, 1950, pp. 850-854
[6] Moldover M.R., Mehl J.B. and Greenspan M., «Gas-filled spherical resonators:
theory and experiment» J. Acoust. Soc. Am. 79(2), 1986, pp. 253-272
[7] Herzog Ph. and Bruneau M., «Shape perturbation and inertial mode coupling
in cavities», J. Acoust. Soc. Am. 86, 1989 , pp. 2377-2384
[8] Ecotière D., Bruneau M. and Tahani N., «Inertial- and flow-induced acoustic
mode coupling in unsteady-rotating cylindrical fluid-filled cavities», J. Sound Vib.
252(1), 2002, pp. 37-63
[9] Rott N., «Thermoacoustics», Advances in Applied Mechanics 20, 1980, pp. 135-175
[10] Swift G.W., «Thermoacoustic engines», J. Acoust. Soc. Am. 84(4), 1988, pp.
1145-1180
[11] Penelet G., Job S., Gusev V., Lotton P. and Bruneau M., «Dependance of
sound amplification on temperature distribution in annular thermoacoustic
engines», Acta Acustica 91, 2005, pp. 567-577
[12] Penelet G., Gusev V., Lotton P. and Bruneau M., “Experimental and
theoretical study of processes leading to steady-state sound in annular
thermoacoustic engines”, Phys. Rev. E 72(2) 016625.1-25.13, 2005
[13] Symko O.G., Abdel-Rahman E., Kwon Y.S., Emmi M. and Behunin R.,
«Design and development of high-frequency thermoacoustic engines for thermal
management in microelectronics», Microelectronics Journal 35, 2004, pp. 185-191
[14] Abdel-Rahman E., Azenui N.C., Korovyanko I. and Symko O.G., «Size
considerations in interfacing thermoacoustic coolers with electronics» Proc.
ITHERM’02 the 8th InterSociety Conf. Thermal. Thermomech. Phenom. in
Electronic Systems , 2002, pp. 421-424
[15] Gusev V., Lotton P., Bailliet H., Job S., Bruneau M., «Thermal waves
harmonics generation in the hydrodynamical heat transport in thermoacoustics»,
J. Acoust. Soc. Am. 109 (1), 2001, pp 84-90
[16] Yazaki T., Tominaga A., Narahara Y., “Large heat transport due to
spontaneous gas oscillation induced in a tube with steep temperature gradients”,
J. of Heat Transfer, 105 (4), 1983, pp. 889-894
[17] Penelet G., Gusev V., Lotton P., Bruneau M., «Non trivial influence of acoustic
streaming on the efficiency of annular thermoacoustic prime movers», Physics
Letters A, Vol. 351, 2006, pp. 268-273
[18] Marx D., Blanc-Benon Ph., “Numerical simulation of stack-heat exchangers
coupling in a thermoacoustic refrigerator”, AIAA Journal 42(7), 2004, pp. 1338-1347.
[19] Lotton P., Blanc-Benon Ph., Bruneau M., Gusev V., Duffourd S., Mironov
M., Poignand G., “Transient regime in thermoacoustic refrigerator: mean
temperature profile evolution inside the stack”, soumis à Int. J. of Heat and Mass
Transfer.
[20] Spoelstra S., Tijani M.E.H., «Thermoacoustic heat pumps for energy
savings», ECN-RX--05-159; December, 2005; 23 pag. Presented at
Grensoverschrijdende akoestiek, Nederlands Akoestisch Genootschap, The
Netherlands, 23 November, 2005.
[21] http://www.acs.psu.edu/thermoacoustics/
[22] S. L. Garrett, J. A. Adeff, and T. J. Hofler, “Thermoacoustic refrigerator for
space applications,” J. Thermophysics and Heat Transfer (AIAA) 7(4), 1993, pp.
595-599.
[23] T.J. Hofler, « Thermoacoustic refrigerator design and performance », thèse
de doctorat, university of california, San Diego, 1986.
[24] http://www.acs.psu.edu/thermoacoustics/refrigeration/benandjerrys.htm
[25] Backhaus S., Swift G. W., « A thermoacoustic Stirling heat engine », Nature
399:335, 1999.
[26] R. Radebaugh, « Review of pulse tube refrigeration » Advances in Cryogenic
engineering 35:1191, 1990.
[27] Liang J., Zhou Y., Zhu W., « Development of a single-stage pulse tube
refrigerator capable of reaching 49 K » Cryogenics 30, 1990, pp. 49-51.
[28] D. L. Gardner and G. W. Swift « Use of inertance in orifice pulse tube
refrigerators », Cryogenics 37, 1997, pp. 117-121.
[29] Swift G.W., Gardner D.L., Backhaus S., « acoustic recovery of lost power in
pulse tube refrigerators », J. Acoust. Soc. Am., 105, 1999.
[30] D. L. Gardner, G. W. Swift « A cascade thermoacoustic engine » J. Acoust.
Soc. Am. 114, 2003
[31] W. Dai, E. Luo, J. Hu, H. Ling, « a heat driven thermoacoustic cooler capable
of reaching liquid nitrogen temperature », Appl. Phys. Lett. 86, 224103, 2005
[32] J. Wollan, G. Swift, W. Wijngaarden, « Development of a Thermoacoustic
Natural Gas Liquefier », AGA Operations Conference, Denver, CO, Mai 2000.
[33] O.G. Symko, E. Abdel-Raman, Y.S. Kwon, M. Emmi, R. Behunin, «Design and
development of high-frequency thermoacoustic engines for thermal management
inmicroelectronics», Microelectronics Journal 35, 2004, pp. 185-191.
[34] Direk Seyhmus, «Design of a Mini Thermo-Acoustic Refrigerator», Master’s
thesis, Naval Postgraduate School Monterey Ca, March 2001
[35] Reh-Lin Chen, Ya-Chi Chen, Chung-Lung, Chialun Tsai, Jeff DeNatale, and
Jeff Nelson, «A miniaturized micro-machined thermoacoustic cooler», J. Acoust.
Soc. Am. 109 (5), 2001, p. 2404
[36] Hofler, T.J., Adeff, J.A., «An optimized miniature Hofler tube» ARLO 2, 2001,
p. 37
[37] Bruneau M., Lotton P., Gusev V., Blanc-Benon P., Gaviot E., Durand S.,
«Réfrigérateur thermoacoustique», brevet N°120434 déposé à l’INPI (mai 2003).
[38] Symko OG, Abdel-Rahman E, «High frequency thermoacoustic refrigerator»,
US patent n° 7 240 495 B2, July 2007
[39] S. Backhaus, E. Tward, M. Petach, Appl. Phys. Lett. 85, 1085, 2004.
[40] A. Migliori, G. W. Swift, « Liquid Sodium Thermoacoustic engine », Appl.
Phys. Let, 53:355, 1988.
[41] A. A. Castrejón-Pitaa, G. Huelsz, « Heat-to-electricity Thermoacoustic
Magnetohydrodynamic conversion », Appl. Phys. Let., 90:174110, 2007
[42] P. S. Spoor, G. W. Swift, « Thermoacoustic Separation of a He-Ar Mixture »,
Phys. Rev. Let., 85:1646, 2000
[43] J.C. Wheatley, T.J. Hofler, G.W. Swift, A. Migliori, « Understanding some
simple phenomena in thermoacoustics with applications to acoustical heat
engines », Am. Journ. Phys. 53:147, 1985.
[44] http://www,acs.psu.edu/thermoacoustics/refrigeration/laserdemo.htm.
[45] D.A. Russel, P. Weitbull, « Tabletop thermoacoustic refrigerator for
demonstrations », Am. Journ. Phys., 70:1231, 2002.